APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS 4, 414-428 (1997)
ARTICLE NO. HA970218

Asymptotics and Numerics of Zeros of
Polynomials That Are Related
to Daubechies Wavelets

Nico M. Temme*

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Communicated by Guy Battle

Received September 23, 1996; revised March 17, 1997

We give asymptotic approximations of the zeros of certain high degree poly-
nomials. The zeros can be used to compute the filter coefficients in the dilation
equations which define the compactly supported orthogonal Daubechies wave-
lets. Computational schemes are presented to obtain the numerical values of
the zeros within high precision.  © 1997 Academic Press

1. DAUBECHIES WAVELETS
The polynomial formed by the first N terms of the binomial expansion
> (k+N-1 >
(1~y)’”=2< )y"=2(—-N)".vk,
k=0 k k=0 k!

that is, the polynomial

kN =
Pvy) = X ( B )y“
k=0

I

1 + Ny + y, (1.1)

2N - 2
My2+...+( >N*‘
2 N -1

where (N), = 'V + k)/T(N), plays an important role in the construction of the
compactly supported Daubechies wavelets. There is a close connection between the
zeros of Py(y) and the 2N filter coefficients h(n) of the Daubechies wavelet D,y. For
a complete account of the theory we refer to Chapter 6 of Daubechies [1]. In this
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section we give the details that are relevant to this paper. In later sections we describe
the asymptotic methods for obtaining the zeros of P,(y) and discuss methods how to
obtain the coefficients A#(n) numerically.

This paper is an extension of work done by Shen and Strang [7]. In Kateb and
Lemarié-Rieusset [3—5] and in Shen and Strang [8] information can be found on the
asymptotics of Daubechies filters. Kateb and Lemarié-Rieusset give in their paper [3]
many estimates for the zeros of Py(y), from which they derive an estimate of the
phase of a function related to the Daubechies wavelets.

1.1. Some Properties of Daubechies Wavelets
We recall that the filter coefficients A(rn) define the dilation equation

2N-1
dx) =2 T hmd(2x — n), (1.2)

n=0

a solution of which is called a scaling function. We take the following normalization
of ¢ and, hence, of the coefficients h(n):

2N~1

f dx)dx = 1, Y h(n) = 2. (1.3)

n=0

For the Daubechies wavelets the filter coefficients are real.
When the filter coefficients and the scaling function ¢ are available, the correspond-
ing compactly supported orthogonal Daubechies wavelet is given by

1
b)) =2 T (=1)'h(l — n)p2x — n), (1.4)

n=2—2N

which is also denoted by D,y.
Denote the Fourier transform of ¢ by

b6 = ﬁ f e (x)dx. (1.5)

Then (1.2) and (1.4) give the relations

&) = my(E2)P(EN2),  P(&) = po(E12)P(E/2), (1.6)
where

l 2N—-1 )
my) = = 2, h(n)e ™,
( \/—i n=0
I .
Ho(&) = —E > (=R = nye

n=2-2N

= —e ¥my(—€ — ). (1.7
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On the one hand, the orthonormality of the functions ¢(- + k), k € Z, can be
expressed in terms of the filter coefficients by the relation

> h(n = 2Dh(n — 2k) = b

where j, k, n run over all relevant indices that define the finite set {i(n)}. On the
other hand, the orthonormality is given by the relation

[mo(€) 12 + [mo(€ + m)|* = L. (1.8)

The trigonometric polynomial my(€) plays an important role in wavelet theory. It
is called the filter function or transfer function. In classifying the compactly supported
orthogonal wavelets, Daubechies assumes that my(£) has an N-fold zero at +7. That
is, she writes

1 —ig\ N N-1 .
mo(€) = ( +26 ) Y fne . (1.9)
n=0

A consequence is the N-fold zero of my(€ + m) and my(—€ — 7) at £ = 0. Using the
relation for ¢ in (1.6) and Lo in (1.7) we see that the N-fold zero of my(&) at — is
related to the vanishing of the N moments

J.w(x)x"dx, k=0,1,...,N— 1.

This property gives a certain degree of approximating quality of the scaling function
and leads to vanishing moments for the filter coefficients:

2N-1

Y (=1'n*a(n) =0, k=0,1,...,N— 1. (1.10)

n=0

1.2. The Construction of Daubechies Wavelets

Taking the symmetric product of the two filter functions and writing z = e, we
have

my©mo(—€) = [my(©)|* = cos™GEPWY), (11D

where Py(y) is the polynomial defined by

N—1
Pyy) = OM2)0OM1/z), QM2 = 2, f(n)z ™", (1.12)

n=0

and y is defined by z + 1/z = 2 — 4y; that is, y = sin*3¢. Indeed, the product
Onz)QN(1/7) can be written as a polynomial of y or cos &, as can be easily verified.
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When the coefficients fin) in (1.12) are known, the filter coefficients h(n)
follow from (1.9) and (1.7). The problem for constructing Daubechies wavelets
is to find {f(n)}.

Substituting (1.11) into the orthonormality relation (1.8) we obtain for the polyno-
mial Py the relation

(1 = W"Pu(y) + Y"P(1 — y) = 1. (1.13)

A polynomial solution of this equation is the polynomial introduced in (1.1). To see
this we introduce the incomplete beta function

Iia, by = — f F e Bla, by = OBy

B(a, b) Jy [+ b))’

where Re @ > 0, Re b > 0, and B(a, b) is the (complete) beta integral. We have
I(a, b) + I,_(b, a) = 1 and we verify easily that the function

Py(y) = (1 — »)™,_(N, N) (1.15)

satisfies the relation in (1.13). Also, this Py is the polynomial introduced in (1.1).
Namely, using the substitution t = (1 — y)u we obtain from (1.14):

)N ey
(I = W (N, N) = L f AN = N dr
0
1

B(N, N)
1 N-1 N—1
= 1 —u+ d
B(N,N)J:) u u + yu) u
1 & (N-1 k fl N—1+k N—1—k
= *1 - d
B(N, N) ,E%) ( k )y 0 “ ( “ *
_Ni' (N— 1) CN A+ k= DIV - k= 1!
"2 ) T -
N-V/N + k=1,
=2 ( L >y‘-
k=0

1.3. Determining the Filter Coefficients
When we know the quantity Py, we can try to solve for Qy in (1.12) and/or to find
the f (n). As an example consider N = 2. From (1.12) we obtain
L+ 2y =[f(0) + f(D/][f(0) + f(1)z]
= £ + f(1)* + fOFf (D(z + 1/z)
= ([f0) + fF(P = 4yf O (1),

from which we can solve for f (0), f (1). From (1.3), (1.7), and (1.9) we already know



418 NICO M. TEMME

that £ (0) + f(1) = 1. Furthermore, we obtain [f(0) — f(1)]* = 3. This gives f(0)
=(1+ \/5)/2, f) = - @)/2. The filter coefficients follow from the relation (see
(1.7) and (1.9))

[(1 + U2R2P[f0) + f(Iz] = ‘/1—; [h(0) + h(1)/z + h(2)/Z* + h(3)/Z].

This gives the coefficients of D,:
3+43 3-43 -3

1 +3
TR = L h2) =22 3y = . (116
42 W e @ =7 ©) 4L (.10

h(0) =

For N = 3 we can also obtain exact solutions of the nonlinear equations, but for larger
values of N this is not possible. In addition, the complexity of the computational
scheme increases.

Remark 1.1. The above equations for f(0), f (1) are symmetric with respect to
these quantities. Interchanging the values of f(0), f(1) gives a different set {h(n)}
(with A(j) = h(3 — j),j = 0, 1, 2, 3). The present choice of f(0), f (1) gives Q.(z)
= f(0) + f(1)/z, with a zero inside the unit circle at 7, = 2 — \/-3-

A different method is based on the zeros of Py(y). When we have computed the
N — 1 zeros y, of Py(y), we can compute the corresponding zeros z, of Quz), by
using the relation z, + 1/z, = 2 — 4y,. We have (recall that Q,(1) = 1)

PN(.V) = OM2)0OM1/2)

N-1

=H1~z,,/z1—zzn
l-2z, 1 -3

n=|

N—-1
Zn(zn + I/Z,, - I I/Z)
=11

t (I -z)
N-1
- Y=
— 4Zn N—1 et
( ) H (1 - Zn).—

n=|

For each value y, there are two z-zeros: z, and 1/z,. We use the zeros z, inside the
unit circle. By expanding the product representation of Qy we obtain the coefficients
f(n) of (1.12), which are needed in (1.9). By expanding and using (1.7) and (1.9) we
obtain the coefficients h(n) from

| A 1+ 1/\"'
— Y hmz™" = ( ) > fmz™ (1.17)
\/—2— n=0 2

n=0
We verify this second method by taking N = 2. We have P,(y) = 1 + 2y, with zero

y1 = —3. The corresponding z, inside the unit circle is z; = 2 — \/3 Equation (1.17)
reads
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FIG. 1.1. Zeros y, (black dots) of Py(y) for N = 100 and corresponding zeros z, (open dots) defined
by z, + l/z, = 2 — 4y,.

1 < B 1+ 1/z>2 1 - z/z
- h(n)z " = .
5 3w =

2 1—Z|

n=0

This gives the coefficients h(n) given in (1.16).

There are several other numerical methods for computing the filter coefficients of
Daubechies wavelets. For example, in Lai [6] numerical methods based on matrix
methods are discussed.

In Fig. 1.1 we show the 99 zeros of P,y (y) and the corresponding z — zeros.

In Shen and Strang [7] the location of the zeros of Py(y) for large values of N is
discussed. The zeros approach a limiting curve |4y(1 — y)| = I in the complex plane.
As remarked by Shen and Strang, the wide dynamic range in the coefficients of Pp(y)
makes the zeros difficult to compute for large N. They give pictures of the zeros
located near the limiting curve up to N = 70, and they observe false results when
using standard Matlab methods for N = 100. In the present paper we give an asymptotic
expansion of the zeros, and we show by numerical verification that these approxima-
tions are excellent starting values for obtaining iterated high precision values of the
zeros. The methods of computing the high degree polynomial Py(y) are also based
on a uniform asymptotic representation of the incomplete beta function, of which
details are given in a final section.

2. ASYMPTOTIC INVERSION OF THE INCOMPLETE BETA FUNCTION

We recall the relation given in (1.15),

Pyy) = (1 = y)"Li-(p, p), (2.1
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with the incomplete beta function defined in (1.14). In Temme [10] the asymptotic
inversion of the incomplete beta function I(a, b) for large values of a and b is
discussed. That is, an asymptotic approximation is given of the solution x of the
equation I (a. b) = q, with 0 < g < 1. We can use the same inversion method for
finding complex x — zeros (different from zero) by taking ¢ = 0. In Temme [10]
three cases have been considered:

¢ g and b large, with a — b bounded;
e a and b large, with a/b and b/a bounded away from zero;
e at least one of the parameters a, b is large.

The first case applies to the present situation, because we are interested in the zeros
of 1,_\(N, N).

We repeat the main steps of the inversion procedure of I.(a, a + () given in Section
2 of Temme [10], by taking a = N, 8 = 0. First we write /,_,(N, N) in terms of an
error function.

2.1. Transformation into Gaussian Form

We have

o4 J.H o dt
I (N, N) = BV.N) o [41(1 — 1)] —t(l ~ .

We transform this to a standard form with a Gaussian character by writing

=0 = In[4(1 — 1], 0<rt<1, sign@) = sign(z — ),

—3> = In[4y(l — )], 0<y<1, sign(n) = sign — y). 2.2)

Therefore,

47" J‘” S
LN, - —amve L 4l e
NN = e )L a—pa®

We can invert the relations in (2.2):

r =31 =41 — exp(—s)] = i1 + C\/[l — exp(—sEHVEA,
y =41 = V1 = exp(—n)] = 31 - [l — exp(—inD))nl, (2.3)

where the second square roots are nonnegative for real values of their arguments. It
easily follows that



ASYMPTOTICS AND NUMERICS OF ZEROS 421

1 dt ~(

(1 —0dC 1 -2

and that the standard form (in the sense of Temme [9]) can be obtained,

v, Ny = Avamem) [ g, 2.4
where
| TV + 9 g
O(N) = ATIVER o) = m . (2.5)
We have
BN) ~1 —iN'+ EN2+ -+ (N— ) (2.6)

The function ¢({) is analytic in a strip containing R; the singularities nearest to the

origin occur at +2\r exp(tiw/ll): The first part of the Taylor expansion of this even
function reads

IS P B
GO =1+ Cr U,

We write (2.4) in the form (see Temme [9])

1N, N) = ferfe(—nNr2) + Ry(m). 2.7)

where 7 is defined in (2.2), and erfc is the error function defined by
A
erfc z = = f e “dt. (2.8)
v J.

In fact, we replace in (2.4) ®(N)¢p(L) by |, and the error is contained in Rpy(n). We
try to find zeros of I,_,(N, N) by using representation (2.7), assuming that N is large.
First we find zeros in terms of 7; afterward, we determine y from the second line in
(2.3). When N is large, we consider the zeros of the error function in (2.7) as a first
approximation to the zeros of the incomplete beta function, after transforming from
7 to y by using the second line in (2.3). Because of the uniform nature of the asymptot-
ics, this first approximation obtained by using only the error function in (2.7) holds
uniformly for all zeros of Pny(y) in the upper half plane.
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2.2. Inversion of the Incomplete Beta Function

Let 1o, 1 solve the equations

Lerfo(—noiV) = 0,

%erf0(~m/§170 + Rp(n) = 0. (2.9)

We assume that 7, is known and that, for large N, this value is a first approximation
for the value 7 that satisfies the second equation in (2.9). The relation between n and
7o 1S written as

n="mn t¢ (2.10)

and we try to determine e. We can expand the quantity € in the form
€
e~—+ S+ =+, (2.11)

as N — o. The coefficients ¢; can be found by using a perturbation method. For details
we refer to Temme [10].
The first coefficient ¢, is given by

1
€, = — In &(no), (2.12)
o

where ¢ is defined in (2.5). The quantity ¢, is an odd function of 7, and analytic in
the disc |no| < 2yr. Further terms of ; are given by

€y =

L (8gel + 8%, — & — dgél); (2.13)
8ne
1

€ = (128¢¢s + 12807 e] — L6de] + 128¢'c, + 64d"el — 128¢'c,
1280

+ ¢ — 128¢ee, — 64dean” — 6ddenel — 16¢eh).  (2.14)

The derivatives ¢’, €', etc., are with respect to 1, and all quantities are evaluated at
No. More information on the coefficients of ¢; will be given in Section 4.2.

3. MORE DETAILS ON THE ZEROS AND NUMERICAL EXAMPLES

As explained in the previous section, the zeros of Py(y) are approximated in terms
of the zeros of the error function. From Fettis, Caslin, and Cramer [2] we know that
two infinite strings of zeros of erfc w occur in the neighbourhood of the diagonals v
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TABLE 1
First Five Pairs wi = u, = iv; of Zeros of erfc w

k 77

1 —1.35481. . . =i 1.99146. . .
2 -2.17704. . . *i 2.69114. . .
3 —2.78438. . . *i 3.23533. ..
4 —-3.28741. . . =*i 3.69730. . .
5 —3.72594. . . =i 4.10610. . .

= *y in the left-half plane u < 0, w = u + iv. The first few zeros are given in Table 1.
Numerical values of the first 100 zeros of erfc w and asymptotic approximations of
the zeros are also given by Fettis et al. A first-order approximation reads

wi ~ 2k — 1/8)e=™™, k — o, 3.1

When 7 is a zero of the right-hand side of (2.7), we use (2.10)—(2.11) for obtaining an

asymptotic expansion of 7 for large positive values of N; —nWN/2 is a zero of the error
function. The mapping of the n-plane to the y-plane is given by (see (2.2)—(2.3))

—n* = Inf4y(1 — y)]. (3.2

Because the zeros in terms of 7 occur in the neighborhood of the diagonals Re n =
+ Im 7 in the right half of the n-plane, we see that the y-zeros of Py(y) occur near
the curve defined by |4y(1 — y)| = 1, with Re y < 3. The full curve is a lemniscate;
the extreme points cut the real axis at y = 3 = 1h2.

The mapping in (3.2) is singular at the points

ket T k= 1,2,3, ...,

on the diagonals in the n-plane. All these branch points are mapped to y = 3. Of
special interest are the points on the diagonals in the right-half plane, for instance,
the points 2y exp(=i/4). The parts of the diagonals given by n = pe*™, 0 < p
< 2V are mapped to the left leaf of the lemniscate, the parts satisfying 2 < p =<
227 are mapped to the right leaf, and so on.

If N is even Pp(y) has one real zero (recall that this polynomial is of degree
N — 1), and this real zero will be approximated by using wi, (see (3.1)), and for the
complex zeros we can use wi, k= 1,2,..., N2 — 1. When N is odd we use wi, k
=1,2,...,(N2 — 1. When N is odd we use wi, k = 1,2, ..., (N — 1)/2.

We have used the asymptotic expansion (2.11) for ¥ = 100 with five terms and
obtained approximations of the zeros of P,(y) which were accurate with a precision
of at least 12 digits. The zeros near y = 3 are more accurate than those near the
extreme point y = 5 — 1A2. The latter correspond to n-values that are closer to the
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singular points Wr exp(*mi/4) of the mapping given in (2.2). The asymptotic expan-
sion (2.11) breaks down at these points.

When N increases the used n-zeros are bounded away from these singular points.
To see this, observe that we need wi, with 1 < k < N/2. From (3.1) we see that
wis ~ YNm e Because wy, a zero of the error function, corresponds to
—nom, we see that the maximal 7, satisfies 7, ~ \[2—7; exp(xmil4).

Remark 3.1. We will not discuss the role of other zeros in the n-plane in the
neighborhood of the diagonals. A similar phenomenon is explained in Temme [11].
The point is that, although we started with integer values of N, the incomplete beta
function in (2.1) and (2.7) can be interpreted with general complex values of N. When
N is not an integer there are more y-zeros, but those occur on other Riemann sheets
of the multivalued incomplete beta function.

3.1. Asymptotic Approximations of the Zeros of Pu(y)

It is not difficult to give an estimate of the zeros of Py(y) that are located close to
the point y = 0.5.

Let w, be a zero of erfc w. The first estimate n, used in (2.10)—(2.11) is given by
o = —we/2/N. When || is small we can use the expansions at the end of Section
4.2 (with 7 = 1) to obtain expansions for n in (2.10) in negative powers of N. When
we have this expansion of 77 we can use the second line of (2.3) to obtain an expansion
of the y-zero in negative powers of N.

We obtain after straightforward calculations for the zero y, of Px(y) that corresponds
with a zero w, of the error function,

Y WOX[I C2wp— 1 20w — 40w; + 3

1 1
= - 4+ — =
2 24N 8N 384N?

24wh — 124wd + 74wl + 15 wh
- +0l—=)|. (33
3072 N (3-3)

as wo/\/lT/ — 0. The corresponding z, value, that satisfies z, + 1/z, = 2 — 4y,, has the
expansion

=i Mo wg  wo@wi = 1) iwgwg — 1)
WN 2N SNYN 8N
20wi — 40w + 3 4
_ wo(20wj Wo )+ ‘ (ﬂ) . (34)
384NA N

N3

as wO/\/X’ — 0. This is the expansion for the zero z, that lies inside the unit circle.
Taking conjugates of wq in (3.3) and of w, and i in (3.4) we obtain expansions of
Yo and Zg.

3.2. Numerical Aspects

When N is large the representation of Py(y) in (1.1) is not suitable for verifying
the accuracy of the zeros that are obtained by asymptotic methods with, say, 12
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accurate digits. When N = 100 the coefficient of the power y* is an integer with

- 198Y o
about 60 digits, and ( % >y)° is about 10" when y = 1. It follows that the zeros have

to be very accurate to verify them by using (1.1), and we have to perform the computa-
tions with many extra digits.

The incomplete beta function can computed for large values of N by using a uniform
asymptotic expansion, which gives a more stable representation. More details are
given in the next section. We have verified the accuracy of the zeros by using this
expansion and obtained the accuracy mentioned above. However, we can use different
numerical verifications, for instance the ones based on sums and products of zeros of
polynomials. For the n zeros y, of the polynomial P(y) = a,)" + * -+ + a,, we have
the relations

n
a, 2 Ve = —dy-y, dy H Ve = (— l)“a()-
k=1

In the present case we know that the zeros y, of Py(y) have to satisfy the rules

" 12N — 2\ v
=—-=, wo= (=Y
ZlyA 5 (N-l)E” (=D

k=

We verified both rules for N = 100 and we obtained by using five terms in (2.11)

99

& | 198
2wt =-256-- X107, < )Hyk+l=—l.56'-~ X 10",
k=1 2 99 k=1

which confirms our earlier claim about the accuracy of the zeros.

We have obtained more accurate values of the zeros of PW(y), N = 100, by using
the multilength facilities of Maple and using the earlier-obtained zeros as starting
values in a Newton—Raphson process based on representations of Py(y) given in (2.1)
and (2.7). In this way we obtained the zeros y, with 45 relevant digits.

In Shen and Strang [7] there is no discussion on numerical methods for obtaining
the filter coefficients A(n), once the zeros y, or z, are available. As we have explained
in Section 1.3 we need the f(n) in (1.17), but the computation of fin) by using the
zeros of Qun(z) may be unstable when N is large. Another source of errors comes trom
expanding the product of the binomial term and Qa(z) in (1.17). Unfortunately, we
do not have available asymptotic methods for obtaining the filter coefficients (we
have powerful methods for Py, but not for Qy). Further numerical research is needed
to compute h(n).

In fact, highly accurate values of y, are needed in order to obtain accurate values
of h(n) by using straightforward methods. Expanding the right-hand side of (1.17) in
powers of 1/z and using 45-digit-accurate values of z,, we have obtained a set h(n)
that satisfies

2N-1

S R(n) — 1 =542x 107", N =100, (3.5)

n=0
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50

50 100 150 200

FIG. 3.1. Filter coefficients h(n) of the Daubechies wavelet Dyy; shown are the values of —log,|h(n)],
n=20,1,...,19.

which shows that the dominant A(n) are accurate with about 20 digits accuracy. A
test based on the vanishing moments given in (1.10) indicated that only for rather
low k values could precision as in (3.5) be obtained.

In Fig. 3.1 we give an idea of the values of the filter coefficients; we give the
values of —log,o|A(n)|, n =0, 1, ..., 199. The largest value of the coefficients is
h(20) = 0.39910 - - -.

4. ASYMPTOTIC EXPANSIONS

4.1. The Incomplete Beta Function

We summarize from Temme [9, 12] the details of an expansion for the incomplete
beta function that is based on formula (2.7). We can expand

e—(l/:)Nn2 i Bk(TI)
—, N— oo, 4.1
27N AZO N 1)

Rul(n) ~

This expansion holds uniformly in a strip |Im 7| < 2r - 6, where 6 is a small

positive number. The width of the strip is determined by the singularities of the

mapping given in (2.2). As mentioned earlier, the singularities are defined by the n-

values for which exp(—4n?) = 1. The n-zeros needed for P(y) all lie within this strip.
By differentiating (2.4) and (2.7) with respect to 7 and substituting

o ~ 3 &
(N) EON"

(a general form of (2.6)) and (4.1), we obtain a set of recursion relations for the
coefficients B,
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1 — ¢ B,
BO = —ﬂ , T]B;H.] = —2_ Ck+l¢(77)s k= O’ 1’ 2’ Tt
n dn

with ¢ given in (2.5). The next two B, are

1 ,
B, = — — (3¢n* — 8¢* + 8),
8n

1 )
By = — —— (25¢n* — 2400’9’ + 384¢° — 384).
128n

In these formulas we have removed the derivatives of ¢ by using

dn

dé(n) _ () [
2

1, )
1+_n-—¢~(n)j| i

which easily follows from (2.5).

427

(4.2)

For verifying the numerical computations of the zeros we have used expansion

(4.1) with terms up to and including B,/N".

4.2. The Coefficients €, of (2.11)

In (2.14) and (2.15) we have given the coefficients ¢, and €. It is convenient to

remove derivatives by using (4.2). In this way we obtain
€2 = 58 + 307 — 8¢ + 4n’e, — 8¢\ — 4,

€3 = (=40 + 5n* + 56¢* — 164° + 87° — 387747 — 16n¢e, + 16¢*€i

— 32¢%n® + 48¢*ein — 6n'c, + 16¢%n
+ 4n’e, — 8n'eid’ + 16¢%ein + 8ein® — 8ein®)n’.

To avoid cancellations for small values of |n| we can use the expansions

€, = _I. — .L_ 34 ! 7 L ,nll 1 7715
TS T 102" T 92160 " T 23224320 4954521600
S S TR
N7
980995276300
1 5 7 s 1 7 407 9 .
i=—n - —— 1+ S - + o
© = 1287 " 15367 T 20060 7 T 819207 ~ 371589120
5 1o, 6 . 823 _
€3 = B

- Sy — +
1024 " " 22576 T T 327630 7 T 165150720
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S | SO (NN L T ,
* T 32768 " T 5536 | 5242880 :
399 209

€5

= +
ST 262144 7 T 2007152 "

All these expansions have radius of convergence Wr.
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